Photosynthetic Declines in Phytophthora ramorum-Infected Plants Develop Prior to Water Stress and in Response to Exogenous Application of Elicitins.

نویسندگان

  • Daniel K Manter
  • Rick G Kelsey
  • Joseph J Karchesy
چکیده

ABSTRACT Phytophthora ramorum, causal agent of sudden oak death, is responsible for widespread oak mortality in California and Oregon, and has the potential to infect 100 or more species. Symptoms range from stem girdling and shoot blight to leaf spotting. In this study, we examined the physiological impacts of P. ramorum infection on Rhododendron macrophyllum. In stem-inoculated plants, photosynthetic capacity (V(cmax)) significantly declined by approximately 21% 3 weeks after inoculation in visibly asymptomatic leaves. By 4 weeks, after the development of significant stem lesions and loss in water transport capacity, water stress led to stomatal closure and additional declines in photosynthetic capacity. We also report the isolation, characterization, and biological activity of two P. ramorum elicitins. Both elicitins were capable of inducing a hypersensitive-like response in one incompatible (Nicotiana tabacum SR1) and three compatible hosts (R. macrophyllum, Lithocarpus densiflorus, and Umbellularia californica). Infiltration of leaves from all three compatible hosts with both P. ramorum elicitins caused significant declines in chlorophyll fluorescence (F(v) /F(m)). For all four species, the loss of photosynthetic capacity was directly proportional to H(+) uptake and ethylene production, two common components of the hypersensitive response. This is the first report of elicitins causing photosynthetic declines in compatible hosts independent of plant water stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthetic Declines Are Induced by Phytophthora ramorum Infection and Exposure to Elicitins

Infection of compatible plants by Phytophthora spp. often leads to a decline in stomatal conductance and photosynthesis, although the mechanistic basis for such declines is not completely understood. In many cases, declines in leaf gas exchange rates have been linked to losses in water supply capacity associated with root and/or xylem. However, the reductions in gas exchange may not be proporti...

متن کامل

Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application

Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...

متن کامل

Study the photosynthetic pigments and phenolic compounds of safflower in response to foliar application of melatonin under water deficit condition

In order to study the effect of melatonin foliar application on photosynthetic pigments’ composition, phenolic compounds and soluble sugars on plants grown from different seed quality of safflower under water deficit condition, two field trials were conducted at Aburaihan Campus, University of Tehran in 2017 and 2018 growing seasons. The experimantal design was split-factorial randomized comple...

متن کامل

Effects of Exogenous Nitric Oxide on Germination and Physiological Properties of Basil under Salinity Stress

Nitric oxide (NO) is a bioactive molecule, which was found to have several physiological roles, including antioxidant. To have a better understanding of the effects of NO concentrations (0, 0.1 and 0.2 mM) on germination, growth, photosynthetic pigments, lipid peroxidation and antioxidant activity of basil (Ocimum basilicum L.) under different salinity concentrations (0, 100 and 200 mM of NaCl)...

متن کامل

The Roles of Selenium in Protecting Lemon Balm against Salt Stress. Ghader Habibi* and Somaie Sarvary

Plant metabolism and productivity is influenced adversely by salinity. Exogenous selenium (Se), applied as sodium selenate in biofortification programmes, has been found effective in alleviating the salt induced damage in plants. The study was conducted in order to determine the effects of exogenous Se supply (10 μM) on the resistance of lemon balm (Melissa officinalis L.) plants to salt stress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 97 7  شماره 

صفحات  -

تاریخ انتشار 2007